

Ecological Site

Ecological Site Definition

- "a distinctive kind of land with specific characteristics that differs from other kinds of land in its ability to produce a distinctive kind and amount of vegetation".

Important Characteristics

- soil texture, <u>depth of A horizon</u>, and type of B horizon (clay, calcic)
- position on landscape (slope)

Loamy Uplands (12-16 p.z.) STM

Drought-fire interactions

Soil

- gravely sandy loam
- 1- 4 inch A horizon
- clay B horizon

*Historic Climax Plant Community

Loamy Uplands (12-16 p.z.) STM

Erosion on Rangelands

Process	Driver	Modifier	
Raindrop detachment	Rainfall energy	Veg/soil characteristics	
Transport/Deposition	Runoff Sediment Load	Slope, roughness, topography	
Flow detachment (Sheet, Concentrated flow)	Transport Capacity	Veg/soil, slope, roughness, topography	

Problem Statement

• STM: States – semi-quantitative, Transitions - qualitative

Relationship between STM and erosion is qualitative

 Little or no data on dominant erosion process (deposition, transport, flow detachment)

Rainfall Simulator Experiment

Walnut Gulch Rainfall Simulator Variable intensity - 25-180 mm/hr

Rainfall Simulator Experiment

4 SMALL PLOTS (0.75 m²) rain drop detachment

4 LARGE PLOTS (2 x 6 m)
infiltration/runoff
integrated erosion response
rain and flow detachment,
transport, deposition

Loamy Uplands (12-16 p.z.) STM

Loamy Uplands States

State	Location	Slope
HCPC - Mid	San Raphael	8
HCPC - Short	Empire	12
Mesquite/Natives High Slope	Empire	14
Mesquite/Natives Low Slope	Empire	4
Lehmans	Walnut Gulch	11

Results – State comparisons

Hydrology and Erosion Characteristics

Q ₁ -1 ₀	Runoff		Sediment		
State	Volume	Peak Rate	Yield	Peak Rate	
HCPC - Mid	0.53	0.83	51	2	
HCPC - Short	0.80 ¹	0.87	217	12	
Mes/Nat HS	0.75	0.83	368	21	
Mes/Nat LS	0.92	0.93	340	15	
Lehmans	0.82	0.86	261	12	

¹ blue number means variable is significantly different than the HCPC - Mid (α = 0.05)

Rainfall Simulator Experiment

4 SMALL PLOTS (0.75 m²) rain drop detachment

4 LARGE PLOTS (2 x 6 m)
infiltration/runoff
integrated erosion response
rain and flow detachment,
transport, deposition

Results – Erosion Process

Identifying the Erosion Process

- Use rainfall simulator large and small plot sediment, q_s, and runoff, q, discharge data
- Rain drop detachment is the same on small and large plots
- Any difference between small and large plot sediment discharge, q_s , is assumed to be due to dominant erosion process on the large plot

Results – Erosion Process

Sediment Discharge Comparisons

- small plot q_s > large plot q_s
 - net deposition on large plot
- small plot q_s < large plot q_s
 - net flow detachment on large plot
- small plot q_s = large plot q_s
 - threshold of deposition/flow detachment on large plot (i.e. net transport)

Results – Erosion Process

Sediment Discharge Comparisons

small plot: $\ln (q_s) = \beta_{0s} + \beta_{1s} \ln (q S_0)$

large plot: $\ln (q_s) = \beta_{0L} + \beta_{1L} \ln (q S_0)$

If $\beta_s = \beta_L$ net transport

If $\beta_{\rm S} > \beta_{\rm L}$ net deposition

If $\beta_{\rm S} < \beta_{\rm I}$ net flow detachment

Results – Mesquite Natives LS

small plot
large plot
HCPC - Mid

Results – Mesquite Natives HS

small plot
large plot
HCPC - Mid

Results – Lehmans

Results – HCPC Short Grass

small plot
large plot
HCPC - Mid

Results - Reduced Grazing

small plot large plot

Year 2003 after wildfire, drought, and heavy grazing

Year 2007 reduced grazing

Results – Wildfire

small plot large plot

unburned

burned

Results – Main Driver

Sediment discharge as a function of flow velocity

Erosion, Ecological Sites, and STMs

- **1. HCPC** → Degraded states
 - a. increased erosion
 - b. net deposition
- 2. Disturbance/Transition:
 - a. Net Deposition ↔ Net Transport
 - **b.** Unknown: Net Detachment ↔ Net Transport
- 3. Main driver is flow velocity which is a function of slope and ground cover, primarily litter cover

Results – State comparisons

Cover Characteristics (%)

State	Litter	Basal	GC	Grass	СС
HCPC - Mid	46	16	72	77	79
HCPC - Short	19 ¹	5	51	35	42
Mes/Nat HS	14	5	58	22	26
Mes/Nat LS	21	4	36	24	36
Lehmans	41	4	68	30	49

¹ blue number means variable is significantly different than the HCPC - Mid (α = 0.05)

Erosion on Rangelands

Accelerated Erosion

- Erosion rate > soil formation rate
- Sheet or concentrated flow erosion
- Impact on Loamy Upland loss of A horizon → less water holding capacity
 → competitive advantage to woody
 - → competitive advantage to woody species

Erosion on Rangelands

Basic Concept

- Raindrop detachment (canopy/ground cover, soil)
- Flow detachment sheet or concentrated flow
 - (ground cover, soil, slope, roughness, microtopography)
- Net transport or Net deposition (slope, roughness, microtopography)

Loamy Uplands Practices

State	Practice
Reference	wildfire
Mesquite/Natives High Slope	wildfire
Mesquite/Natives Low Slope	brush treatment
Short Grass	Drought/Fire/Grazing recovery
Lehmans	natives - Lehmans

